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Crystal and Molecular Structure of (2,2'-Bipyridyl)methylmercury(ii) 
Nitrate, a Complex with Irregular Three-co-ordination 
By Allan J. Canty," Chemistry Department, University of Tasmania, Hobart, Tasmania, Australia 7001 

Crystals of the title compound are triclinic, with a = 1_0.299(5), b = 9.289(5), c = 6.841 (4) 8, u = 88.98(4), /3 = 
105.57(5), y = 84.81 (4)". Z = 2, and space group PI. The structure was solved by conventional Patterson and 
Fourier methods and refined by least-squares techniques to R 0.061 for 1 325 reflections collected by diffractometer. 
The complex has a planar C,Hg,N.N' group with unsymmetrically chelated 2.2'-bipyridyl and three-co-ordinate 
mercury: Hg-C 2.07(5), Hg-N 2.24(3), and Hg-N'2.43(3) 8: C-Hg-N 164(1), C-Hg-N'126(1), and N-Hg-N' 
(chelate angle) 69(1)". The nitrate ion is regular and unco-ordinated. 
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THE co-ordination chemistry of methylmercury(I1) com- 
pounds is restricted almost entirely to linear geometry 
with a co-ordination number of two for mercury.l-* 
Apart from [MeHgO(SiMe,)], which has distorted tetra- 
hedral geometry for m e r ~ u r y , ~  crystallographic studies 
of MeHgII compounds show linear,l-, or almost linear 
r168.1-177.6(0.9) "3 ,l95-8 geometry for mercury with 
co-ordination number two, although several structures 
have additional potential donor atoms at  distances from 
mercury slightly lower (max. ca. 0.2 A) 677 than the sum 
of van der Waals radii.ly4-8 Spectroscopic studies 
indicate weak additional co-ordination in the solid state 
for some MeHgII compounds,10 and stability constant 
studies of MeHgII with some potential bidentate ligands, 
e.g. 2,2'-bipyridyl, 1,lO-phenanthroline, and 8-hydroxy- 
quinoline, suggest chelation to give three-co-ordinate 
mercury in aqueous solution.11 For unidentate ligands 
giving co-ordination numbers greater than two in 
solution, both physical l2-l5 and spectroscopic 12,16$ l7 

data are consistent with a dominant linear, or almost 
linear, moiety with additional weak interactions, e.g. 
stepwise stability constants for MeHgX,(l-n)+ ["IZ > 1, 
X = C1- (refs. 13, la), Br- (ref. 14), and SCN- (ref. 15)] 
are very small, and Raman, i.r., and n.m.r. studies of 
complex formation of MeHgSCN with SCN- indicate 
that the mercury hybridization remains essentially un- 
changed.16 

The complex [MeHg(bipy)] [NO,] (bipy = 2,2'-bi- 
pyridyl) was isolated in crystalline form but it was not 
known whether bipy was present as a uni- or bi-dentate 
ligand.l8 As solution studies indicated that bipy may be 
co-ordinated to MeHgII in aqueous solution,ll we deter- 
mined the crystal structure of this c0mp1ex.l~ 
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EXPERIMENTAL 
The complex was prepared by the reported method 18 and 

crystals grown from methanol. 
Crystal Data.-CllHl,HgN,03, M = 433.82, Triclinic, 

a = 10.229(5), b = 9.289(5), c = 6.841(4) A, a = 88.98(4), 
p = 105.57(5), y = 84.81(4)", U = 623.0 A3, D, = 2.39 
g cm-3 (by flotation), 2 = 2, D, = 2.31 g ~ m - ~ ,  F(000) = 
404. Space group P 1  or Pi shown by the subsequent 
successful refinement to be the centrosymmetric space 
group Pi (No. 2, Cj). Mo-K, radiation, A = 0.710 7 A; 
p(Mo-K,) = 125.9 cm-l. 

Intensity Measurements.-Intensity data were collected 
from one crystal with dimensions ca. 0.10 x 0.10 x 0.14 
mm (optimum size 0.15 mm) with a Philips PW 1100 
diffractometer. Of 1 741 reflections of the unique data set 
collected out to 28(Mo-K,) 46", 416 were considered un- 
observed [I < 30(1)] and were not used in subsequent 
calculations. Three standard reflections monitored a t  1 h 
intervals showed no significant variations in intensity. 
Data were collected by the 0)  scan technique with a sym- 
metric scan width of f0.55" in o plus an allowance for 
dispersion, with a scan rate of 0.02" s-1. The Mo-K, 
radiation was monochromatized with a flat graphite 
monocliromator, and no reflection was sufficiently strong 
to require the insertion of an attenuation filter. Data were 
processed with a programme written specifically for the 
PW 1100 diffractometer.20 Neither extinction nor absorp- 
tion corrections were applied. 

Structure Detenniization and Rejinenzent.--In the least- 
squares calculations the function minimized was Cw(lFol - 
lFcl)2. The Patterson synthesis enabled location of the 
mercury atom by standard methods, and one cycle of 
full-matrix least-squares refinement of positional para- 
meters and an isotropic thermal parameter gave R 0.195. 
All non-hydrogen atoms were located in the subsequent 
difference-Fourier synthesis ; several cycles of full-matrix 
refinement with all atoms having isotropic thermal para- 
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meters, plus several cycles of block-diagonal refinement with deviations, which were derived from the inverse least- 
mercury anisotropic and the non-hydrogen atoms isotropic squares matrix. Atomic scattering factors for neutral 
led to R 0.089 and R’ 0.094 {where I?’ = [Xzu(lF,[ - atoms were taken from ref. 21. 
IFc/) 2/CzulF,,12]*}. A difference-Fourier map revealed ap- CaZcuZatiom.-All calculations were performed on the 
proximate positions of hydrogen atoms, and their positions Monash University CDC 3200 computer. The major 
were idealized assuming C-H 1.05 and approximate programs used during the refinement were modified versions 

TABLE 1 

Final fractional co-ordinates ( x lo4) and anisotropic thermal parameters * for non-hydrogen atoms, with estimated 
standard deviations in parentheses 

%la Ylb  Z l C  Bn B22 B33 B l Z  B13 23 

2 119(2) 2 315(2) 2 905(2) 360(6) 476(7) 444(7) - 165(5) 149(5) -25(5) 

4 421 (32) 4 256(32) 2 627(49) 30(15) 16(13) 34(16) -10(11) lO(13) -6(12) 
13(13) -5(14) 
17(15) -6(14) 3 479(42) 2 661(51) 46(19) 5 1 (20) 27(17) -17(16) 

2 OS7(49) 2 748(52) 16(14) 91(28) 24(16) lO(16) l(12) -7(17) 
5 135(37) 1 754(43) 2 783(52) 35(18) 60(22) 24( 16) 17(16) - l(14) - 14(15) 
3 284(35) 5 379(36) 2 411(49) 38( 17) 33(17) 27(16) - 3(14) ll(14) -5(13) 
3 404(34) 6 805(39) 2 113(54) 29(16) 42(18) 39(18) -11(14) 15(14) - lO(14) 

7 846(42) 1892(58) 61 (23) 45(20) 39(20) - 16(18) 15(18) - 12(16) 
12(17) -8(17) 
S(15) - ll(16) 5 883(42) 2 335(58) 36(18) 47(20) 43(20) -8(15) 

16(11) -2(11) 

1698(31) 7 273(45) 39(13) 62(16) 73(18) -13(12) 34(13) -6(13) 
978(31) 9 048(45) 64( 17) 57(16) 64( 17) -31(13) 28(14) -6(13) 

1218(50) 3 372(74) 32(19) 70(27) 82(30) -11(18) 609)  48(23) 
Hg 
C(1) 
c (2) 

C(4) 
C(5) 

C(2 ) 

C(4’) 

549(40) 

c(3) 6 681(38) 
6 430(34) 

5 701(31) 4 578(37) 2 612(51) 17(14) 40(18) 38(17) 6(12) 

C(6! 

7 354(42) 1 993(61) 43(20) 44(20) 51(22) 9(16) 

2 916(35) 2 658(39) 34(14) 67(18) 16(12) -7(13) 7P1) 1(12) 
4 921(28) 2 551(42) 30( 13) 30(13) 40(15) 9PO) 

c(3’) 2 299(45) 
1088(4l) 

‘(”) 1 032(38) 
c(6’) 4 142(39) 
:[:’) 2 094(27) 

N(2) 3 630(26) 
2 340(30) 

7(12) -1(13) 2 708(30) 1999(33) 8 143(47) 30(13) 48(16) 49(17) -12(12) 
O(1) 
0 (2) 
0 (3) 2 192(29) 3 187(34) 8 140(57) 38(14) 61(17) 120(26) -4(12) 29(16) 3(16) 

* Anisotropic thermal parameters are of the form: exp[-+((B,la*2h2 + B22b*2k2 + B,,G*~Z~ + 2B12a*b*hk + 2Bl,a*c*hZ + 
2Bz3b*c*kZ)], and are x lo2 for Hg, x 10 for the other atoms. 

trigonal geometiy at  the carbon atom. Hydrogen atoms 
were assigned isotropic thermal parameters 1 Aa greater 
than the equivalent isotropic thermal parameter of the 
atom to which they are attached. Finally, several cycles of 
block-diagonal refinement with all non-hydrogen atoms 
being refined with anisotropic thermal parameters, and no 
refinement of hydrogen atom parameters, converged with 
R (observed reflections) 0.061, R’ 0.069, and R (all re- 
flections) 0.084, R’ 0.074. The fin$ differenceFourier 
had no major characteristics >0.5 eA-3, this being in the 
vicinity of the mercury atom. 

TABLE 2 
Calculated co-ordinates ( x lo4) and isotropic thermal para- 

meters for hydrogen atoms, numbered according to the 
carbon atoms to which they are attached 

%la 
5 933 
7 678 
7 212 
4 943 
4 360 
2 382 

197 
97 

Y l b  
5 673 
3 712 
1234 

640 
7 137 
8 974 
8 107 
5 547 

Z/G B 
2 560 5.9 
2 633 6.3 
2 775 7.3 
2 872 6.9 
2 056 6.5 
1675 7.7 
1783 7.9 
2 520 7.1 

Final observed and calculated structure factors are listed 
in Supplementary Publication No. SUP 21754 (9 pp., 
1 microfiche).* Final parameters for all atoms are listed 
in Tables 1 and 2, together with their estimated standard 

* See Notice to Authors No. 7 in J.C.S. Dalton, 1975, Index 
issue. 
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22 W. R. Busing, K. 0. Martin, and H. A. Levy, ORFLS, A 
Fortran Crystallographic Least-Squares Program, Report ORNL 
TM 305, Oak Ridge National Laboratory, Tennessee, 1962. 

(Items less than 10 pp. are supplied as full-size copies.) 

of ORFLS z2 and the Fourier program of White.23 
was drawn by use of the program ORTEP.24 

Figure 1 

RESULTS AND DISCUSSION 
Aspects of the molecular geometry are given in Tables 

3 and 4, and two different views of the molecule are 
in Figures 1 and 2. 

TABLE 3 
Interatomic distances (A) with estimated standard 

deviations in parentheses 
(a) Mercury environment 

Hg-C(1) 2.07(5) Hg * * * 0(1) 2.99(3) 
Hg-N(l! 2.24(3) Hg * - - O(2’) 2.99(3) 
Hg-N(l ) 2.43(3) 

(b) 2,2’-Bipyridyl group 
C(2)-N(1) 1.30(4) C (2 :) -N ( 1,’) 1.35 (5) 

C( 4)-C( 5 )  1.34( 6) C( 4’)-C (5’) 1.38 (6) 
C(5)-C(6) 1.39(6) c (5;)-c (6’) 1.39(6) 
C(6)-N(1) 1.40(5) C(6 )-N(l ) 1.32(5) 
C(2)-C(2’) 1.47(5) 

N( 2)-0 (1) 1.26( 5) N (2) -0 ( 3) 1.18(4) 
N(2)-O(2) 1.26(5) 

C(2)-C(3) C( 3)-C (4) 1.37(5) 1.36( 5) q;j:q;,; ; :;;g 

(c)  Nitrate group 

The crystal structure is composed of [MeHg(bipy)] + 

cations and nitrate anions. There are two nitrate 
oxygen atoms 2.99(3) A [0(1) and 0(2’)] from mercury, 

23 J. C. B. White, Melbourne University Fourier Program 
MUFR 3; see J. C. S. Rollett, in ‘ Computing Methods and the 
Phase Problem in X-Ray Crystal Analysis,’ eds. R. Pepinsky, 
J. M. Robertson, and J.  C. Speakman, Pergamon, Oxford, 1961, 
p. 87. 

24 C. I<. Johnson, ORTEP, Fortran Ellipsoid PIot Program for 
Crystal Structure Illustrations, Report ORNL 3794, Oak Ridge 
National Laboratory, Tennessee. 
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The mercury-carbon bond distance, 2.07(5) A, is 
similar to those found in MeHgII amino-acid complexes 
having mercury bonded to a neutral amine nitrogen: 
2.165(6) A in MeHgf-NH,*CH(C02-)*CMe,*S~HgMe,6 and 

N (1 ’I 
\+. 

one above and one below the [MeHg(bipy)]+ group 
(Figure 1). There is no evidence of nitrate co-ordination : 
the nitrate ion is regular (within l o  in bond lengths and 
angles) and the mercury-oxygen distances correspond 

TABLE 4 
Angles (”), with estimated standard deviations in 

paren theses 

C( I)-Hg-N( 1) 164( 1) N( 1)-Hg-N( 1’) 69(1) 

(a)  About mercury 

C (1 )-Hg-N( 1 ’) 

C(2)-N( 1)-Hg 122(2) C(S’)-N(l’)-Hg 115(2) 
C(6)-N(I)-Hg 115(2) C (6’)-N (1 ’)-Hg I2 7 (2) 
C(3)-C(2)-N(l) 121(3) C(3’)-C(2’)-N( 1’) 12 1 (3) 
C( 3]-C(2)-C(2’) 122( 3) C( 3’)-C (2’)-C (2) 12 3 (3) 
C(2 )-C(2)-N( 1) 117(3) C(2)-C(2’)-N(l’) 116(3) 
C (2)-C (3)-C (4) I 1 9 (3) C( 2’)-C( 3’)-C( 4’) 12 1 (3) 
C (3)-C (4)-C (5) I22 (4) C( 3’)-C( 4‘)-C(5’) 1 17 (4) 
C (4)-C (5)-C (6) 1 20 (4) C (4’)-C (5’)-C (6’) 120 (4) 
C(5)-C(6)-N(I) 117(3) C (57-C (6’)-N ( 1’) 123 (4) 

0(1)-N(2)-0(2) 1 lS(3) 0 (2)-N (2)-0 (3) 120 (3) 
0(1)-N(2)-0(3) 122(3) 

12 6( 1) 
(b)  2,2’-Bipyridyl group 

(c)  Nitrate group 

closely to the sum of van der Waals radii, 2.9 [Hg 1.5 
(ref. l ) ,  0 1.4 A (ref. as)], or 3.13 A using an upper limit 
of 1.73 A for the radius of mercury. 

FIGURE 1 Structure of [hleHg(2,2’-bipyridyl)][N03] viewed 
along [OlO] showing the position of nitrate ions near the 
cation 

The atoms C( l ) ,  Hg, N(1), and N(1’) are essentially 
coplanar as the mercury atom is 0.060(1) A out of the 
plane defined by atoms C(1), N(1), and N(1’). The 
equation for the plane, referred to the orthogonal set of 
axes a,b,c* and with X , Y , Z  as co-ordinates in A, is: 

25 L. Pauling, ‘ The Nature of the Chemical Bond,’ 3rd edn., 

26 D. C. Craig, Y. Farhangi, D. P. Graddon, and N. C. Stephen- 

37 A. L. Beauchamp, B. Saperas, and R. Rivest, Canad. J .  

-0.073 5X - 0.113 3Y - 0.990 82 + 2.341 7 = 0. 

Cornell University Press, Ithaca, New York, 1960, p. 260. 

son, Cryst. Struct. Comm., 1973, 3, 155. 

C h e w ,  1974, 52, 2923. 

69(11’ \ 126(1)’ 

FIGURE 2 Stereochemistry of mercury in the cation 

2.11 (5) A in MeHg+-NH2*CH(C0,-)*CH,*CH2*SMe.7 
Both nitrogen atoms are bonded to mercury, the 
distances Hg-N(l) and Hg-N(l’) being 0.76 and 0.57 
less than the sum of van der Waals radii, 3.0 A [N 1.5 A& 
(ref. 25)]. The shorter mercury-nitrogen bond in the 
2,2’-bipyridyl complex [2.24(3) A] is similar to that in 
MeHg+-NH,*CH(CO,-)*CMe,*S*HgMe 6 which has similar 
non-linear geometry with one additional weak intra- 
molecular interaction [C-Hg-hi 168.1”, Hg-N 2.216(5), 
Hg - - 0 2.708(4) A]. The longer mercury-nitrogen 
bond, 2.43(3) A, is similar to those found in mercury(I1) 
complexes of 2,2’-bipyridyl and 1,lO-phenanthroline 
with higher co-ordination numbers for mercury, e.g. 
2.373(9) and 2.399(8) A in [HgBr2(bipy)], (five-co- 
ordinate) 26 and 2.42(2)-2.52(2) A in [Hg(SCN),(phen),] 
(six-co-ordinate) .27 In addition to mercury-nitrogen 
bond lengths the angular distribution of bonds involving 
mercury is also irregular (Figure 2). 

Approximately trigonal geometry for HgII in the 
compounds [SMe,][HgI,] 28 and HgTiO, z9 can be 
satisfactorily accounted for by an s$2 hybridization 
bonding model. However, for [hIeHg(bipy)] [NO,] the 
irregular co-ordination geometry is clearly inconsistent 
with sf? hybridization (Figure 2 ) ,  and presumably 
reflects the strong tendency for linear geometry in 
organomercury(I1) compounds and the low acceptor 
properties of linear organomercury compounds towards 
additional l i g a n d ~ . l J ~ - ~ ~ ? ~ ~  spectroscopic study of 
[MeHg(bipy) J [NO,] and related three-co-ordinate MeHgII 
complexes is reported e l s e ~ h e r e . ~ ~  
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