Crystal and Molecular Structure of (2,2'-Bipyridyl)methylmercury(iI) Nitrate, a Complex with Irregular Three-co-ordination

By Allan J. Canty,* Chemistry Department, University of Tasmania, Hobart, Tasmania, Australia 7001
Bryan M. Gatehouse, Chemistry Department, Monash University, Clayton, Victoria, Australia 3168

Abstract

Crystals of the title compound are triclinic, with $a=10.299(5), b=9.289(5), c=6.841$ (4) $\AA, \alpha=88.98(4), \beta=$ $105.57(5), \gamma=84.81(4)^{\circ}, Z=2$, and space group $P \overline{1}$. The structure was solved by conventional Patterson and Fourier methods and refined by least-squares techniques to $R 0.061$ for 1325 reflections collected by diffractometer. The complex has a planar $\mathrm{C}, \mathrm{Hg}, \mathrm{N}, \mathrm{N}^{\prime}$ group with unsymmetrically chelated 2.2^{\prime}-bipyridyl and three-co-ordinate mercury: $\mathrm{Hg}-\mathrm{C} 2.07(5), \mathrm{Hg}-\mathrm{N} 2.24(3)$, and $\mathrm{Hg}-\mathrm{N}^{\prime} 2.43(3) \AA$: $\mathrm{C}-\mathrm{Hg}-\mathrm{N} 164(1), \mathrm{C}-\mathrm{Hg}-\mathrm{N}^{\prime} 126(1)$, and $\mathrm{N}-\mathrm{Hg}-\mathrm{N}^{\prime}$ (chelate angle) $69(1)^{\circ}$. The nitrate ion is regular and unco-ordinated.

THE co-ordination chemistry of methylmercury(II) compounds is restricted almost entirely to linear geometry with a co-ordination number of two for mercury. ${ }^{1-8}$ Apart from $\left[\mathrm{MeHgO}\left(\mathrm{SiMe}_{3}\right)\right]_{4}$ which has distorted tetrahedral geometry for mercury, ${ }^{9}$ crystallographic studies of $\mathrm{MeHg}^{\mathrm{II}}$ compounds show linear, ${ }^{1-4}$ or almost linear [168.1-177.6(0.9) $\left.{ }^{\circ}\right]^{1,5-8}$ geometry for mercury with co-ordination number two, although several structures have additional potential donor atoms at distances from mercury slightly lower (max. ca. $0.2 \AA$) ${ }^{6,7}$ than the sum of van der Waals radii. ${ }^{1,4-8}$ Spectroscopic studies indicate weak additional co-ordination in the solid state for some $\mathrm{MeHg}{ }^{\mathrm{II}}$ compounds, ${ }^{10}$ and stability constant studies of $\mathrm{MeHg}^{\mathrm{II}}$ with some potential bidentate ligands, e.g. 2,2'-bipyridyl, 1,10-phenanthroline, and 8-hydroxyquinoline, suggest chelation to give three-co-ordinate mercury in aqueous solution. ${ }^{11}$ For unidentate ligands giving co-ordination numbers greater than two in solution, both physical ${ }^{12-15}$ and spectroscopic ${ }^{12,16,17}$ data are consistent with a dominant linear, or almost linear, moiety with additional weak interactions, e.g. stepwise stability constants for $\mathrm{MeHgX}_{n}(1-n)^{+}[n>1$, $\mathrm{X}=\mathrm{Cl}^{-}$(refs. 13, 14), Br^{-}(ref. 14), and SCN ${ }^{-}$(ref. 15)] are very small, and Raman, i.r., and n.m.r. studies of complex formation of MeHgSCN with SCN^{-}indicate that the mercury hybridization remains essentially unchanged. ${ }^{16}$

The complex $\quad[\mathrm{MeHg}($ bipy $)]\left[\mathrm{NO}_{3}\right] \quad$ (bipy $=2,2^{\prime}$-bipyridyl) was isolated in crystalline form but it was not known whether bipy was present as a uni- or bi-dentate ligand. ${ }^{18}$ As solution studies indicated that bipy may be co-ordinated to $\mathrm{MeHg}{ }^{\text {II }}$ in aqueous solution, ${ }^{11}$ we determined the crystal structure of this complex. ${ }^{19}$
${ }^{1}$ D. Grdenić, Quart. Rev., 1965, 19, 303.
${ }^{2}$ J. C. Mills, H. S. Preston, and C. H. L. Kennard, J. Organometallic Chem., 1968, 14, 33.
${ }^{3}$ Y. S. Wong, P. C. Chieh, and A. J. Carty, J.C.S. Chem. Comm., 1973, 741.

4 A. I. Kitaigorodskii, 'Organic Chemical Crystallography,' Consultants Bureau, New York, 1961, pp. 144-151, 316-321.
${ }^{5}$ U. Müller, Z. Naturforsch., 1973, B28, 426.
${ }^{6}$ Y. S. Wong, P. C. Chieh, and A. J. Carty, Canad. J. Chem., 1973, 51, 2597.
${ }^{7}$ Y. S. Wong, N. J. Taylor, P. C. Chieh, and A. J. Carty, J.C.S. Chem. Conm., 1974, 625.
${ }^{8}$ N. J. Taylor, Y. S. Wong, P. C. Chieh, and A. J. Carty, J.C.S. Dalton, 1975, 438.
${ }_{9}$ G. Dittmar and E. Hellner, Angew. Chem. Internat. Edn. 1969, 81, 679.
${ }_{10}$ E.V. Bryuchova and G. K. Semin, J.C.S. Chem. Comm., 1972, 1216.
${ }_{11}$ G. Anderegg, Helv. Chim. Acta, 1974, 57, 1340.

EXPERIMENTAL

The complex was prepared by the reported method ${ }^{18}$ and crystals grown from methanol.

Crystal Data. $-\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{HgN}_{3} \mathrm{O}_{3}, \quad M=433.82$, Triclinic, $a=10.229(5), b=9.289(5), c=6.841(4) \AA, \alpha=88.98(4)$, $\beta=105.57(5), \quad \gamma=84.81(4)^{\circ}, \quad U=623.0 \AA^{3}, \quad D_{\mathrm{m}}=2.39$ $\mathrm{g} \mathrm{cm}^{-3}$ (by flotation), $Z=2, D_{\mathrm{c}}=2.31 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 404. Space group $P 1$ or $P \bar{l}$ shown by the subsequent successful refinement to be the centrosymmetric space group $P \overline{1}$ (No. 2, C_{i}^{1}). Mo- K_{α} radiation, $\lambda=0.7107 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=125.9 \mathrm{~cm}^{-1}$.

Intensity Measurements.-Intensity data were collected from one crystal with dimensions ca. $0.10 \times 0.10 \times 0.14$ mm (optimum size 0.15 mm) with a Philips PW 1100 diffractometer. Of $\mathbf{1} 741$ reflections of the unique data set collected out to $2 \theta\left(\mathrm{Mo}-K_{\alpha}\right) 46^{\circ}, 416$ were considered unobserved $[I<3 \sigma(I)]$ and were not used in subsequent calculations. Three standard reflections monitored at 1 h intervals showed no significant variations in intensity. Data were collected by the ω scan technique with a symmetric scan width of $\pm 0.55^{\circ}$ in ω plus an allowance for dispersion, with a scan rate of $0.02^{\circ} \mathrm{s}^{-1}$. The Mo- K_{α} radiation was monochromatized with a flat graphite monochromator, and no reflection was sufficiently strong to require the insertion of an attenuation filter. Data were processed with a programme written specifically for the PW 1100 diffractometer. ${ }^{20}$ Neither extinction nor absorption corrections were applied.

Structure Determination and Refinement.-In the leastsquares calculations the function minimized was $\sum w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$. The Patterson synthesis enabled location of the mercury atom by standard methods, and one cycle of full-matrix least-squares refinement of positional parameters and an isotropic thermal parameter gave $R 0.195$. All non-hydrogen atoms were located in the subsequent difference-Fourier synthesis; several cycles of full-matrix refinement with all atoms having isotropic thermal para-
${ }^{12}$ I. P. Beletskaya, K. P. Butin, A. N. Ryabtsev, and O. A. Reutov, J. Organometallic Chem., 1973, 59, 1.
${ }^{13}$ G. Plazzogna, P. Zanella, and L. Doretti, J. Organometallic Chem., 1971, 29, 169; N. Bertazzi, G. Alonzo, and A. Silvestri, J. Inovg. Nuclear Chem., 1972, 34, 1943.
${ }_{14}$ V. Lucchini and P. R. Wells, J. Organometallic Chem., 1975, 92, 283.
${ }_{15}$ V. F. Toropova and M. K. Saikina, Russ. J. Inorg. Chem., 1965, 10, 631.
${ }^{16}$ J. Relf, R. P. Cooney, and H. F. Henneike, J. Organometallic Chem., 1972, 39, 75.
${ }_{17}$ V. S. Petrosyan and O. A. Reutov, J. Ovganometallic Chem., 1974, 76, 123; Pure Appl. Chem., 1974, 37, 147.
${ }_{18}$ G. E. Coates and A. Lauder, J. Chem. Soc., 1965, 1857.
19 For a preliminary account see, A. J. Canty, A. Marker, and B. M. Gatehouse, J. Organometallic Chem., 1975, 88, C31.
${ }^{20}$ J. Hornstra and B. Stubbe, PW 1100 Data Processing Program, Philips Research Laboratories, Eindhoven, Holland.
meters, plus several cycles of block-diagonal refinement with mercury anisotropic and the non-hydrogen atoms isotropic led to $R \quad 0.089$ and $R^{\prime} 0.094$ \{where $R^{\prime}=\left[\Sigma w\left(\left|F_{0}\right|-\right.\right.$ $\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w\left|F_{\mathrm{o}}\right|^{2}\right]\right\}$. A difference-Fourier map revealed approximate positions of hydrogen atoms, and their positions were idealized assuming $\mathrm{C}-\mathrm{H} \quad 1.05 \AA$ and approximate
deviations, which were derived from the inverse leastsquares matrix. Atomic scattering factors for neutral atoms were taken from ref. 21.

Calculations.-All calculations were performed on the Monash University CDC 3200 computer. The major programs used during the refinement were modified versions

Table 1
Final fractional co-ordinates $\left(\times 10^{4}\right)$ and anisotropic thermal parameters ${ }^{*}$ for non-hydrogen atoms, with estimated

trigonal geometry at the carbon atom. Hydrogen atoms were assigned isotropic thermal parameters $1 \AA^{2}$ greater than the equivalent isotropic thermal parameter of the atom to which they are attached. Finally, several cycles of block-diagonal refinement with all non-hydrogen atoms being refined with anisotropic thermal parameters, and no refinement of hydrogen atom parameters, converged with R (observed reflections) $0.061, R^{\prime} 0.069$, and R (all reflections) 0.084, $R^{\prime} 0.074$. The final difference-Fourier had no major characteristics $>0.5 \mathrm{e}^{-3}$, this being in the vicinity of the mercury atom.

Table 2
Calculated co-ordinates ($\times 10^{4}$) and isotropic thermal parameters for hydrogen atoms, numbered according to the carbon atoms to which they are attached

	x / a	y / b	z / c	B
$\mathrm{H}(3)$	5933	5673	2560	5.9
$\mathrm{H}(4)$	7678	3712	2633	6.3
$\mathrm{H}(5)$	7212	1234	2775	7.3
$\mathrm{H}(6)$	4943	640	2872	6.9
$\mathrm{H}\left(3^{\prime}\right)$	4360	7137	2056	6.5
$\mathrm{H}\left(4^{\prime}\right)$	2382	8974	1675	7.7
$\mathrm{H}\left(5^{\prime}\right)$	197	8107	1783	7.9
$\mathrm{H}\left(6^{\prime}\right)$	97	5547	2520	7.1

Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21754 (9 pp., 1 microfiche).* Final parameters for all atoms are listed in Tables 1 and 2, together with their estimated standard

[^0]of ORFLS ${ }^{22}$ and the Fourier program of White. ${ }^{23}$ Figure 1 was drawn by use of the program ORTEP. ${ }^{24}$

RESULTS AND DISCUSSION

Aspects of the molecular geometry are given in Tables 3 and 4, and two different views of the molecule are in Figures 1 and 2.

Table 3
Interatomic distances (\AA) with estimated standard deviations in parentheses
(a) Mercury environment

$\mathrm{Hg}-\mathrm{C}(1)$	$2.07(5)$	$\mathrm{Hg} \cdots \mathrm{O}(1)$	$2.99(3)$
$\mathrm{Hg}-\mathrm{N}(1)$	$2.24(3)$	$\mathrm{Hg} \cdots \mathrm{O}\left(2^{\prime}\right)$	$2.99(3)$
$\mathrm{Hg}-\mathrm{N}\left(1^{\prime}\right)$	$2.43(3)$		
(b) $2,2^{\prime}-\mathrm{Bipyridyl}$ group			
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.30(4)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$1.35(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.37(5)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1.36(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.36(5)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1.39(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.34(6)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1.38(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.39(6)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1.39(6)$
$\mathrm{C}(6)-\mathrm{N}(1)$	$1.40(5)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$1.32(5)$
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	$1.47(5)$		
(c) Nitrate group			
$\mathrm{N}(2)-\mathrm{O}(1)$	$1.26(5)$	$\mathrm{N}(2)-\mathrm{O}(3)$	$1.18(4)$
$\mathrm{N}(2)-\mathrm{O}(2)$	$1.26(5)$		

The crystal structure is composed of $[\mathrm{MeHg}(\mathrm{bipy})]^{+}$ cations and nitrate anions. There are two nitrate oxygen atoms $2.99(3) \AA\left[\mathrm{O}(1)\right.$ and $\left.\mathrm{O}\left(2^{\prime}\right)\right]$ from mercury,
${ }^{23}$ J. C. B. White, Melbourne University Fourier Program MUFR 3; see J. C. S. Rollett, in 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis,' eds. R. Pepinsky, J. M. Robertson, and J. C. Speakman, Pergamon, Oxford, 1961, p. 87.
${ }^{24}$ C. K. Johnson, ORTEP, Fortran Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL 3794, Oak Ridge National Laboratory, Tennessee.
one above and one below the $\left[\mathrm{MeHg}\right.$ (bipy) ${ }^{+}$group (Figure 1). There is no evidence of nitrate co-ordination: the nitrate ion is regular (within 1σ in bond lengths and angles) and the mercury-oxygen distances correspond

Table 4
Angles (${ }^{\circ}$), with estimated standard deviations in parentheses

(a) About mercury			
$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{N}(1)$	$164(1)$	$\mathrm{N}(1)-\mathrm{Hg}-\mathrm{N}\left(1^{\prime}\right)$	$69(1)$
$\mathrm{C}(1)-\mathrm{Hg}-\mathrm{N}\left(1^{\prime}\right)$	$126(1)$		
(b) $2,2^{\prime}-\mathrm{Bipyridyl}$	group		
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Hg}$	$122(2)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{Hg}$	$115(2)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Hg}$	$115(2)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{Hg}$	$127(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	$121(3)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$121(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	$122(3)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)$	$123(3)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(2)-\mathrm{N}(1)$	$117(3)$	$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$116(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119(3)$	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$121(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122(4)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$117(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120(4)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$120(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$117(3)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$123(4)$
$(c) \mathrm{Nitrate} g r o u p$			
$\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{O}(2)$	$118(3)$	$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{O}(3)$	$120(3)$
$\mathrm{O}(1)-\mathrm{N}(2)-\mathrm{O}(3)$	$122(3)$		

closely to the sum of van der Waals radii, $2.9[\mathrm{Hg} 1.5$ (ref. 1), O $1.4 \AA$ (ref. 25)], or $3.13 \AA$ using an upper limit ${ }^{1}$ of $1.73 \AA$ for the radius of mercury.

Figure 1 Structure of $\left[\mathrm{MeHg}\left(2,2^{\prime}\right.\right.$-bipyridyl) $]\left[\mathrm{NO}_{3}\right]$ viewed along [010] showing the position of nitrate ions near the cation
The atoms $\mathrm{C}(\mathrm{l}), \mathrm{Hg}, \mathrm{N}(\mathrm{l})$, and $\mathrm{N}\left(\mathrm{l}^{\prime}\right)$ are essentially coplanar as the mercury atom is $0.060(1) \AA$ out of the plane defined by atoms $\mathrm{C}(\mathrm{l}), \mathrm{N}(\mathrm{l})$, and $\mathrm{N}\left(\mathrm{l}^{\prime}\right)$. The equation for the plane, referred to the orthogonal set of axes a, b, c^{*} and with X, Y, Z as co-ordinates in \AA, is: $-0.0735 X-0.1133 Y-0.9908 Z+2.3417=0$.
${ }^{25}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960, p. 260.
${ }^{26}$ D. C. Craig, Y. Farhangi, D. P. Graddon, and N. C. Stephenson, Cryst. Struct. Comm., 1973, 3, 155.
${ }_{27}$ A. L. Beauchamp, B. Saperas, and R. Rivest, Canad. J.

The mercury-carbon bond distance, $2.07(5) \AA$, is similar to those found in $\mathrm{MeHg}^{\mathrm{II}}$ amino-acid complexes having mercury bonded to a neutral amine nitrogen: 2.165(6) \AA in $\mathrm{MeHg}^{+}-\mathrm{NH}_{2} \cdot \mathrm{CH}\left(\mathrm{CO}_{2}{ }^{-}\right) \cdot \mathrm{CMe}_{2} \cdot \mathrm{~S} \cdot \mathrm{HgMe}^{6}{ }^{6}$ and

Figure 2 Stereochemistry of mercury in the cation
$2.11(5) \AA$ in $\mathrm{MeHg}^{+}-\mathrm{NH}_{2} \cdot \mathrm{CH}\left(\mathrm{CO}_{2}^{-}\right) \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{SMe}^{7}$ Both nitrogen atoms are bonded to mercury, the distances $\mathrm{Hg}-\mathrm{N}(\mathrm{l})$ and $\mathrm{Hg}-\mathrm{N}\left(\mathrm{l}^{\prime}\right)$ being 0.76 and $0.57 \AA$ less than the sum of van der Waals radii, $3.0 \AA[\mathrm{~N} 1.5 \AA$ (ref. 25)]. The shorter mercury-nitrogen bond in the $2,2^{\prime}$-bipyridyl complex $[2.24(3) \AA]$ is similar to that in $\mathrm{MeHg}^{+}-\mathrm{NH}_{2} \cdot \mathrm{CH}\left(\mathrm{CO}_{2}{ }^{-}\right) \cdot \mathrm{CMe}_{2} \cdot \mathrm{~S} \cdot \mathrm{HgMe}^{6}$ which has similar non-linear geometry with one additional weak intramolecular interaction $\left[\mathrm{C}-\mathrm{Hg}-\mathrm{N} 168.1^{\circ}, \mathrm{Hg}-\mathrm{N} 2.216(5)\right.$, $\mathrm{Hg} \cdots \mathrm{O} 2.708(4) \AA]$. The longer mercury-nitrogen bond, $2.43(3) \AA$, is similar to those found in mercury(II) complexes of $2,2^{\prime}$-bipyridyl and 1,10 -phenanthroline with higher co-ordination numbers for mercury, e.g. $2.373(9)$ and $2.399(8) ~ \AA$ in $\left[\mathrm{HgBr}_{2}(\text { bipy })\right]_{2}$ (five-coordinate) ${ }^{26}$ and $2.42(2)-2.52(2) ~ \AA$ in $\left[\mathrm{Hg}(\mathrm{SCN})_{2}(\text { phen })_{2}\right]$ (six-co-ordinate). ${ }^{27}$ In addition to mercury-nitrogen bond lengths the angular distribution of bonds involving mercury is also irregular (Figure 2).

Approximately trigonal geometry for $\mathrm{Hg}^{\text {II }}$ in the compounds $\left[\mathrm{SMe}_{3}\right]\left[\mathrm{HgI}_{3}\right]^{28}$ and $\mathrm{HgTiO}_{3}{ }^{29}$ can be satisfactorily accounted for by an $s p^{2}$ hybridization bonding model. However, for $[\mathrm{MeHg}$ (bipy) $]\left[\mathrm{NO}_{3}\right]$ the irregular co-ordination geometry is clearly inconsistent with $s p^{2}$ hybridization (Figure 2), and presumably reflects the strong tendency for linear geometry in organomercury(II) compounds and the low acceptor properties of linear organomercury compounds towards additional ligands. ${ }^{1,12-17,30}$ A spectroscopic study of $[\mathrm{MeHg}$ (bipy) $]\left[\mathrm{NO}_{3}\right]$ and related three-co-ordinate $\mathrm{MeHg}{ }^{\text {II }}$ complexes is reported elsewhere. ${ }^{31}$
We thank the Commonwealth Development Bank and the Australian Research Grants Committee for financial support.
[5/1966 Received, 8th October, 1975]

[^1]
[^0]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1975, Index issue. (Items less than 10 pp . are supplied as full-size copies.)
 ${ }^{21}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
 ${ }_{22}$ W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, A Fortran Crystallographic Least-Squares Program, Report ORNL TM 305, Oak Ridge National Laboratory, Tennessee, 1962.

[^1]: ${ }_{28}^{28}$ R. H. Fenn, J. W. H. Oldham, and D. C. Phillips, Nature, 1963, 198, 381.
 ${ }_{29}$ A. W. Sleight and C. T. Prewitt, J. Solid-State Chem., 1973, 6, 509.

 30 A. J. Canty and G. B. Deacon, J. Organometallic Chem., 1973, 49, 125; A. J. Canty and B. M. Gatehouse, Acta Cryst., 1972, B28, 1872.
 ${ }^{31}$ A. J. Canty and A. Marker, Inorg. Chem., 1976, 15, 425.

